NOTATIONS

(a, b)	$\{x: a<x<b\}$
$[a, b)$	$\{x: a \leq x<b\}$
$(a, b]$	$\{x: a<x \leq b\}$
[a, b]	$\{x: a \leq x \leq b\}$
$\operatorname{gcd}(m, n)$	greatest common divisor of two integers m and n
$\operatorname{lcm}(m, n)$	least common multiple of two integers m and n
[x]	greatest integer m such that $m \leq x$
$m \equiv k(\bmod n)$	m and k are congruent modulo n (m and k have the same remainder when divided by n, or equivalently, $m-k$ is a multiple of n)
f^{-1}	inverse of an invertible function f (not the same as $\frac{1}{f}$)
$\lim _{x \rightarrow a^{+}} f(x)$	right-hand limit of $f(x)$; limit of $f(x)$ as x approaches a from the right
$\lim _{x \rightarrow a^{-}} f(x)$	left-hand limit of $f(x)$; limit of $f(x)$ as x approaches a from the left
\varnothing	the empty set
$x \in S$	x is an element of set S
$S \subset T$	set S is a proper subset of set T
$S \subseteq T$	either set S is a proper subset of set T or $S=T$
$S \cup T$	union of sets S and T
$S \cap T$	intersection of sets S and T

DEFINITIONS

A relation \mathfrak{R} on a set S is
reflexive if $x \Re x$ for all $x \in S$
symmetric if $x \Re y \Rightarrow y \Re x$ for all $x, y \in S$
transitive if $(x \Re y$ and $y \Re z) \Rightarrow x \Re z$ for all $x, y, z \in S$
antisymmetric if $(x \Re y$ and $y \Re x) \Rightarrow x=y$ for all $x, y \in S$
An equivalence relation is a reflexive, symmetric, and transitive relation.

FORMULAS

Sum

$$
\begin{aligned}
& \sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
& \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y \\
& \tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
\end{aligned}
$$

Half-angle (sign depends on the quadrant of $\frac{\theta}{2}$)

$$
\begin{aligned}
& \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} \\
& \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}
\end{aligned}
$$

Range of Inverse Trigonometric Functions

$$
\begin{array}{ll}
\sin ^{-1} x & {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} \\
\cos ^{-1} x & {[0, \pi]} \\
\tan ^{-1} x & \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}
$$

Law of Sines

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$\underline{\text { Law of Cosines }}$

$$
c^{2}=a^{2}+b^{2}-2 a b(\cos C)
$$

DeMoivre's Theorem

$$
(\cos \theta+i \sin \theta)^{k}=\cos (k \theta)+i \sin (k \theta)
$$

Coordinate Transformation

Rectangular (x, y) to polar $(r, \theta): r^{2}=x^{2}+y^{2} ; \tan \theta=\frac{y}{x}$ if $x \neq 0$
Polar (r, θ) to rectangular $(x, y): \quad x=r \cos \theta ; y=r \sin \theta$

Distance from point $\left(x_{1}, y_{1}\right)$ to line $A x+B y+C=0$

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Volume

Sphere with radius r :
$V=\frac{4}{3} \pi r^{3}$
Right circular cone with height h and base of radius $r: \quad V=\frac{1}{3} \pi r^{2} h$
Right circular cylinder with height h and base of radius $r: \quad V=\pi r^{2} h$

Pyramid with height h and base of area B :
$V=\frac{1}{3} B h$
Right prism with height h and base of area B :
$V=B h$

Surface Area

$$
\begin{array}{ll}
\text { Sphere with radius } r: & A=4 \pi r^{2} \\
\text { Right circular cone with radius } r \text { and slant height } s: & A=\pi r s+\pi r^{2}
\end{array}
$$

Differentiation

$$
\begin{aligned}
& (f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& (f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x) \\
& \left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \text { if } g(x) \neq 0
\end{aligned}
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

