NOTATIONS

(<i>a</i> , <i>b</i>)	$\{x : a < x < b\}$
[a,b)	$\{x : a \le x < b\}$
(<i>a</i> , <i>b</i>]	$\{x : a < x \le b\}$
[<i>a</i> , <i>b</i>]	$\{x : a \le x \le b\}$
gcd(m, n)	greatest common divisor of two integers m and n
lcm(m, n)	<u>least common multiple</u> of two integers m and n
[<i>x</i>]	greatest integer m such that $m \le x$
$m \equiv k \pmod{n}$	m and k are congruent modulo n (m and k have the same remainder
	when divided by <i>n</i> , or equivalently, $m - k$ is a multiple of <i>n</i>)
f^{-1}	<u>inverse</u> of an invertible function $f(\underline{\text{not}} \text{ the same as } \frac{1}{f})$
$\lim_{x \to a^+} f(x)$	<u>right-hand limit</u> of $f(x)$; limit of $f(x)$ as x approaches a from the right
$\lim_{x \to a^-} f(x)$	<u>left-hand limit</u> of $f(x)$; limit of $f(x)$ as x approaches a from the left
Ø	the empty set
$x \in S$	x is an element of set S
$S \subset T$	set S is a proper subset of set T
$S \subseteq T$	either set S is a proper subset of set T or $S = T$
$S \cup T$	union of sets S and T
$S \cap T$	intersection of sets S and T

DEFINITIONS

A relation \mathfrak{R} on a set S is

<u>reflexive</u> if $x \Re x$ for all $x \in S$ <u>symmetric</u> if $x \Re y \Rightarrow y \Re x$ for all $x, y \in S$ <u>transitive</u> if $(x \Re y \text{ and } y \Re z) \Rightarrow x \Re z$ for all $x, y, z \in S$ <u>antisymmetric</u> if $(x \Re y \text{ and } y \Re x) \Rightarrow x = y$ for all $x, y \in S$

An equivalence relation is a reflexive, symmetric, and transitive relation.

<u>Sum</u>

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

<u>Half-angle</u> (sign depends on the quadrant of $\frac{\theta}{2}$) $\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}$ $\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$

Range of Inverse Trigonometric Functions

$$\sin^{-1} x \qquad \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$\cos^{-1} x \qquad \left[0, \pi \right]$$
$$\tan^{-1} x \qquad \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines

$$c^2 = a^2 + b^2 - 2ab(\cos C)$$

DeMoivre's Theorem

 $(\cos\theta + i\sin\theta)^k = \cos(k\theta) + i\sin(k\theta)$

Coordinate Transformation

Rectangular (x, y) to polar (r, θ) : $r^2 = x^2 + y^2$; $\tan \theta = \frac{y}{x}$ if $x \neq 0$ Polar (r, θ) to rectangular (x, y): $x = r \cos \theta$; $y = r \sin \theta$

Distance from point (x_1, y_1) to line Ax + By + C = 0

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

Volume

Right circular cone with height <i>h</i> and base of radius <i>r</i> : $V = \frac{1}{3}\pi r$	^{2}h
Right circular cylinder with height <i>h</i> and base of radius <i>r</i> : $V = \pi r^2 h$	ļ
Pyramid with height <i>h</i> and base of area <i>B</i> : $V = \frac{1}{3}Bh$	
Right prism with height h and base of area B : $V = Bh$	

Surface Area

$4\pi r^2$

Right circular cone with radius r and slant height s: $A = \pi r s + \pi r^2$

Differentiation

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$\left(f\left(g(x)\right)\right)' = f'(g(x))g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \text{ if } g(x) \neq 0$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$